High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED
نویسندگان
چکیده
We present a new approach which allows one to insert a silica nanosphere with a single quantum dot into a highQ photonic crystal slab nanocavity with an asymmetric nanohole in the center. The high Q cavity is optimized by adjusting air holes around the L3-type cavity based on three-dimensional finite-difference time-domain simulation. High Q value of 48 700 in this asymmetric cavity is achieved. The performance of the cavity with an assumed silica sphere containing a single quantum dot in the nanohole is also discussed, in which the Q factor can reach 5 × 104 and modal volume V is 0:048 μm3 (∼0:62 ðλ0=nÞ). It is found that the electric field intensity in the nanohole is much stronger than the maximum electric field in the cavity without a nanohole. This makes it possible to locate the precise position of the quantum dot with respect to the cavity mode electric maximum. This system provides a good candidate for realizing a strong interaction between a quantumdot and cavity for the study of cavity quantum electrodynamics. © 2011 Optical Society of America OCIS codes: 230.5298, 140.3948, 270.5580.
منابع مشابه
Photonic crystal nanocavity laser in an optically very thick slab.
A photonic crystal (PhC) nanocavity formed in an optically very thick slab can support reasonably high-Q modes for lasing. Experimentally, we demonstrate room-temperature pulsed lasing operation from the PhC dipole mode emitting at 1324 nm, which is fabricated in an InGaAsP slab with thickness (T) of 606 nm. Numerical simulation reveals that when T≥800 nm, over 90% of the laser output power cou...
متن کاملSlab thickness tuning approach for solid-state strong coupling between photonic crystal slab nanocavity and a quantum dot
The quality factor and mode volume of a nanocavity play pivotal roles in realizing the strong coupling interaction between the nanocavity mode and a quantum dot. We present an extremely simple method to obtain the mode volume and investigate the effect of the slab thickness on the quality factor and mode volume of photonic crystal slab nanocavities. We reveal that the mode volume is approximati...
متن کاملAn Accelerated FETI-DPEM Method for Modeling Photonic Crystal Nanocavities
The dual-primal finite element tearing and interconnecting (FETI-DPEM) method, as an application of a nonoverlapping domain decomposition method to the finite element analysis of electromagnetic problems, is applied to the three-dimensional (3D) full-wave simulation of a high quality (Q) factor photonic crystal (PhC) nanocavity in an optically thin dielectric slab. Curvilinear tetrahedral eleme...
متن کاملDesign of high-Q Cavities in Photosensitive Material-based Photonic Crystal Slab Heterostructures
We propose a novel concept for creating high-Q cavities in photonic crystal slabs (PCS). We show that photonic crystal slab-based double heterostructure cavities, formed by variations in the refractive index, can have large a Q-factor (up to Q = 1× 10), and that such cavities can be implemented in chalcogenide glasses using their photosensitive properties. DOI: 10.2529/PIERS060907042030 In the ...
متن کاملStrong Optical Filed Intensity Improvement Introducing InGaAsP Quantum Wells in InP Nanocavity
This paper presents the optical characteristics of a quantum well doped InP nanocavity.The resonance wavelength of the nanocavity and the optical field intensity is calculated before and after presence of the quantum wells. The resulting huge filed intensity of about 1.2×108 respect to the incident field is the effect of quantum wells placed in vicinity of center of nanocavity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010